Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋
times.
You may assume that the array is non-empty and the majority element always exist in the array.
Credits:
Special thanks to for adding this problem and creating all test cases.这是到求众数的问题,有很多种解法,可参见网友,其中我感觉比较好的有两种,一种是用哈希表,这种方法需要O(n)的时间和空间,另一种是用一种叫摩尔投票法 Moore Voting,需要O(n)的时间和O(1)的空间,比前一种方法更好。这种投票法先将第一个数字假设为众数,然后把计数器设为1,比较下一个数和此数是否相等,若相等则计数器加一,反之减一。然后看此时计数器的值,若为零,则将当前值设为候选众数。以此类推直到遍历完整个数组,当前候选众数即为该数组的众数。代码如下:
C++ 解法一:
class Solution {public: int majorityElement(vector & nums) { int res = 0, cnt = 0; for (int num : nums) { if (cnt == 0) {res = num; ++cnt;} else (num == res) ? ++cnt : --cnt; } return res; }};
Java 解法一:
public class Solution { public int majorityElement(int[] nums) { int res = 0, cnt = 0; for (int num : nums) { if (cnt == 0) {res = num; ++cnt;} else if (num == res) ++cnt; else --cnt; } return res; }}
下面这种解法利用到了位操作Bit Manipulation来解,将中位数按位来建立,从0到31位,每次统计下数组中该位上0和1的个数,如果1多,那么我们将结果res中该位变为1,最后累加出来的res就是中位数了,相当赞的方法,这种思路尤其在这道题的延伸中有重要的应用,参见代码如下:
C++ 解法二:
class Solution {public: int majorityElement(vector & nums) { int res = 0; for (int i = 0; i < 32; ++i) { int ones = 0, zeros = 0; for (int num : nums) { if ((num & (1 << i)) != 0) ++ones; else ++zeros; } if (ones > zeros) res |= (1 << i); } return res; }};
Java 解法二:
public class Solution { public int majorityElement(int[] nums) { int res = 0; for (int i = 0; i < 32; ++i) { int ones = 0, zeros = 0; for (int num : nums) { if ((num & (1 << i)) != 0) ++ones; else ++zeros; } if (ones > zeros) res |= (1 << i); } return res; }}
本文转自博客园Grandyang的博客,原文链接:,如需转载请自行联系原博主。